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1 SUMMARY 

Rapid trajectory planning and control for single or cooperative vehicles is an area of special 
interest in the field of autonomous robotics, and new research and development of innovative 
algorithms for these systems are at an all-time high due to advances in computing power, 
communication, and sensors. 

In this project, a “divide-and-conquer” based hierarchical approach empowered by the virtual 
motion camouflage based trajectory planning algorithm is investigated to tackle the challenges 
experienced in the cooperative planning problems of dynamical systems. The salient features of 
the proposed algorithm are the low computational cost and scalability.  Through this method, the 
problem dimension of the achieved nonlinear programming problem is significantly reduced, 
such that it can be solved much quicker, while still being able to find the optimal solution. The 
method is supplemented by two perturbation techniques and augmented by the wavefront 
algorithm, which are used to generate good initial guesses for the optimization process and 
significantly enhance the success rate. In addition, the bio-inspired approach proposed in the 
bottom level can easily address nonlinear dynamics, conflict resolution, obstacle avoidance, etc.  
For the vision processing aspect, a template-based predictive search algorithm is applied to 
process the images obtained through a low-cost webcam vision system, which is used to monitor 
the testbed environment. Also a user-friendly graphical interface is developed such that the 
functionalities of the webcam, robots, and optimizations are automated. The capabilities of this 
new algorithm have been successfully demonstrated in the low cost robot platforms constructed 
at the University of Central Florida and the Air Force Research Laboratory – Space Vehicle 
Directorate. 

In the final report, the following items will be discussed in details: hierarchical control 
framework, bio-inspired optimal trajectory planning method, robot vehicle dynamics and 
obstacle avoidance, hardware platform, robot localization and obstacle detection, low level robot 
path tracking, automatic robot parameter calibration, and software architecture, simulation 
results, and hardware demonstrations. 
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2 INTRODUCTION 

Cooperative control is crucial for networked dynamical systems (e.g. distributed underwater, 
ground, aerial, and/or space vehicles) to work effectively in dynamically changing and cluttered 
environments [1]. 

To date, the majority of existing algorithms are developed based on simple models such as single 
or double integrators that a fast response can be achieved in a feedback form and that many 
useful properties within a framework of graph theories, linear system theories, and matrix 
algebra can be easily applied [2][3][4]. However, real dynamic systems, such as spacecraft and 
satellites, have much more complex nonlinear dynamics, or are heterogeneous with possibly each 
vehicle having different dynamical characteristics, nonlinearities, and constraints, and may 
operate in adverse and uncertain environments. 

On the other hand, to date, developing a cooperative optimal control strategy that considers all 
the above mentioned constraints is still a very challenging task [5] from both theoretical and 
implementation perspectives.  Most of the current approaches are computationally expensive and 
can only be used offline [6][7]. 

In this research, a hierarchical approach empowered by the virtual motion camouflage based 
trajectory planning method is introduced to tackle these challenges based on the divide-and-
conquer strategy. The capabilities of this innovative approach are demonstrated in a low cost 
robot formation. 

The proposed research has the following objectives: 

O1: Hardware Demonstration: The new algorithm will be demonstrated in a group of low cost 
robots. 

O2: Top-Level Optimal Distributed Control: an optimal formation algorithm will be 
investigated to guarantee the macro cooperative behaviors of the networked dynamic 
system under simplified double-integrator dynamics and considering obstacle avoidance. 

O3: Bottom-Level Bio-Inspired Fast Planning Algorithm: A virtual motion camouflage based 
real-time algorithm will be investigated for each individual vehicle to optimize the 
trajectory neighboring the one produced in the top-level. The algorithm will address 
various types of real-world constraints that have been intentionally omitted in the top level. 

O4: A low-cost robot testbed will be developed to validate the investigated new algorithms. 
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3 METHODS, ASSUMPTIONS, AND PROCEDURES 

The research conducted is summarized as: hierarchical control framework, bio-inspired optimal 
trajectory planning method, robot vehicle dynamics and obstacle avoidance, hardware platform, 
robot localization and obstacle detection, low level robot path tracking, automatic robot 
parameter calibration, and software architecture, simulation results, and hardware 
demonstrations. 

3.1 Hierarchical Framework 

The hierarchical structure is illustrated in Fig. 1.  Following the concept of “divide-and-
conquer”, two methods are combined to address cooperative planning challenges at the top level 
and the real-world constraints at the bottom level separately to tackle computational cost issues. 

In this architecture (Fig. 1), the top level algorithm generates reference cooperative trajectories to 
be used by each vehicle at the bottom level over a time interval of 1[ , ]k kt t  . The only information 
transmitted from the top level to the bottom level of each vehicle is the reference trajectory 
(position). The bottom level algorithm optimizes the actual trajectory considering all realistic 
constraints and dynamics. Control commands generated by the bottom level are the ones actually 
used for vehicle level tracking control in this hierarchical approach. 

Figure 1. Hierarchical Structure of the cooperative control [8]. 

3.2 Bio-Inspired Optimal Trajectory Planning / Re-planning Algorithm 

The virtual motion camouflage (VMC) inspired varying subspace optimal trajectory planning 
method has been customized in this research to be two approaches: (1) the first approach 
(optimal) is used in the individual vehicle’s trajectory planning [9]; and (2) the second approach 
(suboptimal) is used in the hierarchical cooperative approach.  The main difference between 
these two approaches is: in (1) the virtual prey motion is represented via B-Spline curves and the 
parameters controlling the shape of the B-Spline curves are optimized; and in (2) the virtual prey 
motion is passed from the top level algorithm and itself will not be optimized. 
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The motivation of the VMC method and the analysis of the solution optimality can be found in 
[8][10].  For brevity, only the steps involved in this algorithm is listed here. 

The motion camouflage (MC) strategy [11] is used by the male hoverfly (i.e. aggressor) to 
conceal its motion as seen by the female hoverfly (i.e. prey) in mating activities (Fig. 2). There 
are three variables determining the path of the aggressor: reference point rx , a one-dimensional 
time varying path control parameter (PCP) ( )v t  [12], and the prey motion ( )p tx . The aggressor 
can pick any reference point and PCP variables as long as its position satisfies the MC rule as 

 [ ]( ) ( ) ( )a r p rt t tv  x x x x      (1) 

An interesting observation about this phenomenon is: the aggressor only moves along the path 
( )a tx  in a subspace constructed by the prey motion ( )p tx  and the reference point rx  according to 

Eq. (1) at any instance. 

Figure 2. Motion camouflage 

A typical trajectory planning and re-planning problem is to solve for the state x  and control u  to 
minimize a performance index ( , )J x u , subject to the nonlinear dynamics = ( , )x f x u , inequality 
constraints ( , ) 0g x u , and equality constraints ( , ) 0h x u . 

For many dynamical systems (like the ones tested in this research), the state vector can be 
separated as [ ]T T T

a sr,x x x , of which 1 an
ax  is the “position” state and the remaining states srx  

are called the “state rate”.  The VMC approach begins by defining the “position” part of the 
states as the aggressor motion. Via the MC strategy, the aggressor motion is limited in the 
subspace constructed according to Eq. (1). The reference point needs to be optimized.  The 
derivatives of the “position” state ax  can be calculated via 

  a p r pv v  x x x x        (2) 

   2a p r p pv v v   x x x x x          (3) 

and so on. Through the dynamic inversion procedure, the “state rate” variables srx  and the 
control input u  can be represented as functions of the PCPs, virtual prey motion, reference 
point, and their corresponding derivatives. 
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After that, the PCP ( )ν t  is discretized using a high order discretization scheme, such as the 
Legendre-Gauss-Lobatto method [6].  The parameters to be optimized are the PCP nodes ,kv  

0,...,k N , and the reference point rx . Further development in has shown that boundary 
conditions can be used to further reduce the number of the parameters to be optimized [9].  

Method 1 (Used in Single Vehicle Control): The optimality of the solution obtained in the 
VMC formulation is determined by the varying subspace constructed by the virtual prey and the 
reference point. Therefore to enhance the solution optimality, the virtual prey motion and thus 
the subspace should also be varied and optimized. Here the virtual prey motion is approximated 
by B-Splines [13] as 

, , ,
0

( ) ( ) 1,...,
cpn

p i k j d k i j a
j

x t B t P i n


      (4) 

In Eq. (4), 1cpn   is the number of control points used in the B-Spline representation.  It is worth 
noting that as cpn  approaches infinite, the parameterized B-Spline curve will converge to the 
actual virtual prey motion.  However, it is not practical to have a large cpn . Therefore there is 
always a tradeoff between the computational cost and solution optimality.  The cpn is initially 
selected by users, and the software is programmed that if an initial guess of cpn  does not achieve 
a converged solution, this value will be perturbed a little bit. The derivatives of the virtual prey 
motion can be calculated by 

, , ,
0

( ) ( ) 1,...,
cpn

p i k j d k i j a
j

x t B t P i n


       (5) 

, , ,
0

( ) ( ) 1,...,
cpn

p i k j d k i j a
j

x t B t P i n


       (6) 

and so on, where , , 1,..., , 0,...,i j a cpP i n j n   are the control points that represent the shape of the 
virtual prey motion. , ( )j d kB t , 0,..., cpj n , are the thd  degree basis functions, and , ( )j d kB t  and ,j dB  
are the first and second derivatives of the basis functions, respectively.  The detailed equations in 
calculating those basis functions can be found in [13].  As described in [17], a wavefront 
algorithm [16] and a smoothing algorithm will be used to provide a collision free and smoothing 
prey motion. 

Method 2 (Used in the Hierarchical Framework): The trajectory calculated by the top level 
planner will be regarded as the prey motion (not arbitrary selected), and the reference point will 
be regarded as optimization parameters. In this approach, the cooperative planning trajectory 
generation algorithm can be found in [8].  In the starting of each horizon, the top-level algorithm 
will propagate for this horizon.  The cooperative path will be used as the prey motion, over 
which the bottom level will optimize the vehicles’ trajectories. 
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3.3 Robot Vehicle Dynamics and Obstacle Avoidance 

A simple nonlinear model is used in our testbed to represent two-wheel robot [14] as                                

                                            

(7)

 

where the two wheels’ midpoint  , T
x y  is regarded as the “position” state and   is the heading 

angle. Two control variables (related to the translational and rotational power) are involved as the 
speed v and the angular speed w , and they are respectively constrained by maxv v  and 

maxw w .  Obstacle avoidance: obstacle avoidance is considered to be inequality constraints in 
the achieved nonlinear programming problem.  For simplicity, all the obstacles are assumed to be 
circular and the inequality constraints are modeled as    2 2 2

, , ,   i obs i obs i obsx x y y r , in which 

, ,,i obs i obsr x , and ,i obsy  are the radius and coordinate of the ith obstacles respectively.  Here all these 
values can be either detected by the vision processing algorithm in the hardware or predefined in 
the testbed. 

3.4 Cooperative Planning in the Top Level 

At the top level, the robot i  is abstracted as a double-integrator: 

 , ( ) ( )
, 1,...,

( ) ( )
i a i

v
i i

t t
i n

t t


 





x v

v a
                         (8) 

in which vehicle i  is assumed to be a point mass, and ,i ax , iv , and ia  are the position, velocity, 
and acceleration vectors.  The top level planner is to achieve a desired cooperative behavior, 
while avoiding obstacles characterized. Denoting the aggregate state and control variables at the 
top level as 1, , 1[ , , , , , ]

v v

T T T T T
a n a n  X x x v v  and 1[ , , ]

v

T T T
n U a a . The cost function to be 

optimized at the top level is 

1 2 3 0
( , )t t tJ J J J dt


   � X U     (9) 

where 1tJ , 2tJ , and 3tJ  represent the costs associated with the formation, obstacle avoidance, 
and control effort, respectively.  The top level cooperative planning solution can be found in [8]. 

3.5 Hardware Platform 

The proposed algorithm is demonstrated in a robot formation control testbed as shown in Fig. 3. 
In this test scenario, several obstacles will be placed in the test area to validate the collision 
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avoidance capability of the algorithm. The robots obtain their commands from the laptop and the 
laptop obtained the position and obstacle information from the overhead camera. The position of 
the robot can be obtained through the vision system monitoring the whole test area.  The 
algorithms described will compute the optimal path in the laptop computer and then these 
commands will be transmitted via the Bluetooth ( Bluetooth word mark and logos are 
registered trademarks owned by Bluetooth SIG, Inc.) to the corresponding robots for them to 
follow. 

 
Figure 3. Robots formation control testbed 

The architecture of the LEGO robots (® LEGO is a trademark and/or copyright of the LEGO Group) used 
in tests were based off the quick-start, tracked robot design centered around a NXT ‘Brick.’ This 
brick contains a 32-bit ARM7 microprocessor with 256 Kbytes Flash/64 Kbytes RAM, a 8-bit 
microprocessor with 4 Kbytes Flash/512 Byte RAM, four sensor input ports and 3 motor output 
ports. Each brick is also capable of Bluetooth wireless communication which was used to control 
each robot and obtain sensor information. Each robot’s left and right tracks are separately 
controlled via singles from the NXT brick which is also where data is collected from the sensors 
before being sent to a central hub via Bluetooth (Fig. 4 and Fig. 5). 
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Figure 4. NXT brick is the brain of 
the robots and acts as the interface 

between each robot’s sensors/motors 
and the upper level control. 

 

Figure 5. The communication diagram for three 
robots. 

On-board sensors include a single axis gyroscope, three axis accelerometer, and compass. The 
accelerometer is capable of measuring accelerations up to +/-19.62 m/s with a resolution of 
0.04905 m/s on each axis at 100 Hz. The gyroscope samples at 300 Hz with a resolution of 1 
deg/s and a maximum +/- 360 degrees/s while the compass samples at 100 Hz with a resolution 
of 1 degree and ranges from 0 to 359 degrees.  However in the interest of reducing delays in data 
collection, only the compass was used and an even that was in an auxiliary capacity to be discussed 
along with the vision system next. 

Robot and obstacle information was determined through the webcam based vision system 
suspended over the test bed. Each robot sensor mounting was covered with two dots, one black 
and the other uniquely colored. The uniquely colored dot was used to differentiate each robot and 
the combination of the two was used for heading calculations. 

The motor onboard of the robot will be regarded as the actuator.  Varying the power input to the 
motor from 0% to 100% will give different speed of the robot.  The building sensor of the motor 
can be accurate to +/1 degree. 

The testbed configuration described above has the following advantages in the perspective of 
testing the proposed algorithm: (1) this platform is low cost; (2) the platform is compatible with 
other hardware platform and can communicate with them through USB or Bluetooth; and (3) the 
robot can talk to the algorithms written in MATLAB on the laptop through Bluetooth, which can 
significantly reduce the time in the software development cycle. 

3.6 Robot Localization and Obstacle Detection 

Robot localization and obstacle detection are accomplished through almost identical means using 
an overhead camera, capturing 480x640 resolution images at rates up to 30fps. In either case, a 
normalized cross correlation matrix (NCC) [18] 480 640R   is created using a grayscale image 

Laptop

NXT Brick

Motors

Sensors

NXT Brick

Motors

Sensors

NXT Brick

Motors

Sensors

Webcam
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from the vision system, 480 640
gsH R  , and a grayscale template of the object of interest, 

M Nf R  , such that 

   
   

    
,,

0.522

,, ,

, ,
( , )

, ,

gs u vx y

gs u vx y x y

H x y H f x u y v f
u v

H x y H f x y y v f


        
        


 

               (10) 

 where f  is the mean of the grayscale template and ,u vH  is the mean of the grayscale image 
under the template shifted to [ , ]u v . 

Object locations are determined by the local maximums of   passing a set tolerance. The results 
are illustrated in Figure 6 and Figure 7 for the obstacle detection and the robot localization, 
respectively. It is worth noting that because all obstacles currently used in the testbed are 
homogenous, this is all that is required to obtain the location and radius of the obstacles 

,[ , ] , 1,...,obst obst obst i obstx y r i n , where obstn  is the number of obstacles. 

 

 
Figure 6. Visual output of a NCC using the obstacle template. a) After pass of NCC b) 

Original image c) After thresholding 
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Figure 7. Visual output of a NCC using the robot dot template before thresholding. Based 

off the same original image seen in Figure 6a. 

In order to fully determine the rn  robots’ locations and headings, [ , , ] , 1,...,rob rob rob i rx y i n  , 
more computation is required. The average RGB values of the areas surrounding the dot locations,
[ , ] , 1,..., 2dot dot i rx y i n , are found and compared to the predefined thresholds to determine the 
sets of unpaired colored dots , 1,...,cd rx i n , and , 1,...,bd rx i n  as seen in  Figure 7. Black dots 
and colored dots, the latter of which acts as a unique ID for each robot, are then paired by 
proximity. 

The position for each robot is then determined as 

 
 
 

, , .

, , .

/ 2
, 1,...,

/ 2
rob i cd i bd i

r

rob i cd i bd i

x x x
i n

y y y

 


 
 ,                                    (11) 

while the heading is found using 

 , ,
,

, ,

arctan , 1,...,cd i bd i
rob i r

cd i bd i

y y
i n

x x


 
    

                                (12) 

When programmed in MATLAB, these algorithms can be used to process images at 100Hz for 
the robot localization, and 7.4Hz for the obstacle detection, respectively. Therefore all vision data 
is updated every 0.14 seconds (7.4Hz).  The more detailed information about the localization 
using the developed testbed can be found in [17]. 

.
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3.7 Path Tracking 

Here a tracking controller is designed to calculate proper motor commands for robots to track the 
generated optimal path  * *, , 1,...,i i rx y i n  via the VMC method. If the current position is

, ,( , ), 1,...,rob i rob i rx y i n , the rotation command is given based on  

*
,

, *
,

arctan , 1,...,
 

     

i rob i
rob i r  

i rob i

y y
i n

x x
   (13) 

and then a translational command is computed as 

   2 2* *
, , , , 1,...,     rob i i rob i i rob i rx x x y y i n        (14) 

Rotational and translational power commands for a time step t  can be found by  

,
,

,

, 1,...,





 


rob i
R i r

R i

i n
tc

     (15) 

and 

,
,

,

, 1,...,


 


rob i
T i r

T i

x
i n

tc
      (16) 

where  

 , , , , 1,...,  R i l i r i r

r
c c c i n

d
        (17) 

 , , , , 1,...,
2

  T i l i r i r

r
c c c i n      (18) 

This has proven to provide adequate tracking of the planned trajectories, as can be seen in Figure 
8, and typically have a maximum tracking error of around 4 pixels or 1.1 cm. 

,

.
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Figure 8. Examples of path tracking (blue diamonds) for given trajectories (red) 

3.8 Automatic Robot Parameter Calibration 

For a differential drive robot, such as the ones used in the testbed, and assuming a case of no 
slipping, the robot can be controlled by the turn rate of   and the translational velocity of V , 
and the motion is governed by the following dynamics [15]  

 
 
 

cos 0
sin 0

0 1

x

y V


 



    
         
        







                                                (19) 

V  and  , depicted in Figure 9, can be generated based on the left and right wheel angular 
speeds [16] 

 
 

 
2 l r

l r

r
V

r

d

 

  

   
   

      

     (20) 

with the wheel radius r and the distance between wheels d , measured in cm  . The power level 
commands ,l r  , used in the robot firmware, for generating desired angular velocities of the 
wheels can be computed by 

 / , ,i i ic i l r             (21) 

where the constants ic  , can be found through calibration. 
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Figure 9. Body and global reference frames used in testbed. 

A program was developed for a quick calibration and autonomous calibration. A series of 
rotation and translation commands are sent to a robot for known time steps and the responses 
(i.e. ,x   ) are measured. An example of this can be seen in Figure 10. From these 
measurements, constants can be found through a least square approach. Table 1 shows the 
calculated values from the example. It is worth noting that from equations 15 and 16, it isn’t 
necessary to measure the robot’s wheel radius and width as they can be grouped into the 
constants of rotation and translation.  

 
Figure 10: Example of automatic calibration for a robot. Commands alternate between 

positive and negative rotations and translations. 

Table 1: Calculated Values for the Example Calibration 

Parameter Value 
r 2.54cm 
d  15.24cm 

rc  0.09396  

lc  0.10396 

GY

GX

RY ,RX V

, 

. .c g
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3.9 Software Architecture and Software Package 

The software modules developed and the programming languages used are shown in the 
following table. The main software controls the information flow among sensors, actuators, and 
all the control algorithms.  The information collected from the sensors will be saved in a 
common bus so that all the software functions can get that information.  The main software 
controls the communication among vision system, Bluetooth on the robots, and the MATLAB 
files in the laptop. It is worth noting that the names of the software main subroutines for those 
functionalities are listed in the table and there are many other subroutines have been sent to 
AFRL-Space Vehicle Directorate. 

Table 2: Software Package 

Programming Language Software 
Module 

Main Subroutines’ Names 

Bottom level algorithms MATLAB vmc_ob_top.m 
Top level algorithms MATLAB Formation_top_prey_alg.m 
Communication between the robots and laptops RORBOTC

/MATLAB 
Open_Bluetooth.m 

Position calculation MATLAB CAM_Robust_FindRobots.m
Velocity calculation MATLAB CAM_Robust_FindRobots.m
Steering angle calculation MATLAB CAM_Heading.m 
Steering rate calculation MATLAB CAM_Heading.m 
Encoder command calculation MATLAB Robot_MotorCommand.m 
Communication between the laptop and vision 
system 

MATLAB CAM_Robust_FindRobots.m

Main Software MATLAB main_hierarchical.m 

A user friendly graphic interface is developed and one screenshot is shown in Figure 11. 

 
Figure 11. Graphic user interface.
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4 RESULTS AND DISCUSSION 

4.1 Simulation Results 

To test the robustness of the VMC based algorithm, a Monte Carlo simulation is conducted 
before implemented in the hardware testbed.  More than 500 Monte Carlo runs are simulated, in 
which the initial position, initial velocities, locations of the obstacles, and the sizes of the 
obstacles are varying.  Figures 12 and 13 are two screenshots from the Monte Carlo simulation.  
For each case, it takes the MATLAB code roughly 1-5 seconds to obtain the optimal solution for 
the single vehicle trajectory planning. 

Figure 12. Monte Carlo simulation case 1 
 

Figure 13. Monte Carlo simulation case 2 

4.2  Testbed Demonstration 1 – Single Vehicle Trajectory Planning 

The test area and scenario are shown in Fig. 14 through Fig. 17, in which the web camera, 
laptop, and robots are shown.  A couple of collision avoidance minimum time cases are shown 
here: (1) single robot trajectory planning (Fig. 14), (2) two robots trajectory planning (Fig. 15), 
(15) the webcam system on the ceiling, and (16) the test area (100 inches by 72 inches) 

 
Figure 14. Single robot planning 

 
Figure 15. Two robots planning 



 

 
Approved for public release; distribution is unlimited. 

 16 

 
Figure 16. Webcam on the ceiling 

 
Figure 17. Testbed area 

Figure 18 shows one trajectory planning and re-planning results using the VMC method in the 
hardware test.  As it is shown, when two new obstacles are popped up in the path, the VMC 
algorithm quickly generated a different optimal path considering these two obstacles. 

 
Figure 18. Trajectory planning (before certain obstacles shown up) and 

re-planning (after certain obstacles shown up) 

4.3  Testbed Demonstration 2 – Hierarchical Cooperative Control 

The results of three separate runs in testbed at UCF, using the proposed hierarchical cooperative 
control method, are shown. Each formation was driven to the target pixel location of [550, 240], 
but each robot’s position relative to the formation’s center was changed for each run. 

Case 1 (Fig. 19): Robots 1 and 2 started at pixel locations of [50, 186] and [58, 293], 
respectively. Given the desired formation positions of [0, -80] and [0, 80], the initial robot 
trajectories took 0.22 seconds to compute. The optimization of the trajectories took 7.35 seconds 
to converge to for robot 1 and 11.03 seconds for robot 2.  
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Figure 19. Hierarchical cooperative trajectory planning case 1 

Case 2 (Fig. 20): Robots 1 and 2 started at pixel locations [89, 424] and [92, 50], respectively. 
Given the desired formation positions of [0, 50] and [0, -50], the initial robot trajectories took 
0.23 seconds to compute. The optimization of the trajectories took 8.91 seconds to converge to 
for robot 1 and 18.34 seconds for robot 2.  

 
Figure 20. Hierarchical cooperative trajectory planning case 2 

Case 3 (Fig. 21): Robots 1 and 2 started at pixel locations [94, 95] and [129, 394], respectively. 
Given the desired formation positions of [0, 50] and [0, -50], the initial robot trajectories took 
0.15 seconds to compute. The optimization of the trajectories took 6.01 seconds to converge to 
for robot 1 and 18.93 seconds for robot 2.  

 
Figure 21. Hierarchical cooperative trajectory planning case 3 
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5 CONCLUSIONS 

A low cost, vision based robot testbed is designed and implemented for the purpose of validating 
new trajectory planning algorithms for single- or multi-vehicle systems. This testbed can support 
multiple structurally changeable robot platforms and uses an overhead vision system for robot 
localization and obstacle detection. An easy-to-use graphical user interface is designed to assist 
users in simulating a complex environment and quickly changing the algorithms being   tested. A 
specific algorithm, the B-Spline augmented virtual motion camouflage method enhanced by the 
wavefront path planning algorithm, is demonstrated in this testbed for robots to navigate through 
an obstacle dense environment. Results show that the testbed developed is functioning properly 
and the optimal trajectories can be found rapidly while avoiding obstacle and inter-robot 
collisions. 

The research results have generated the following publications. 

 G. Basset, Y. Xu, and K. Pham, “Bio-Inspired Rendezvous Strategies and Respondent 
Detections,” Accepted to the AIAA Journal of Guidance, Control, and Dynamics, May 
2012. 

 Basset, G., Xu, Y., and Pham, K. D., “Motion Camouflage Feasibility and Detection for 
Space Situational Awareness,” 2012 American Control Conference. 

 G. Basset, R. SiVilli, Y. Xu, and K. Pham, “Minimum-Time Obstacle Avoidance 
Trajectory Planning for Vision Based Robots,” submitted to Robotica. 

 R. SiVilli, Y. Xu, and K. Pham, “A Vision-Based Robot Testbed for Single or Multiple 
Vehicles’ Trajectory Planning,” submitted to 2013 American Control Conference. 

The Software Version 2.0 (Hierarchical Cooperative Control) has been delivered to AFRL-RV.  
Also the hardware testbed video has been delivered to AFRL-RV. 

Some potential research and development improvements include: (i) A cooperative trajectory 
planning algorithm, based on the modified local pursuit strategy, needs to be investigated for 
networked spacecraft in proximity operations, which can handle different constraints, nonlinear 
dynamics, conflict resolution, and obstacle avoidance. (ii) A system identification method needs 
to be used online to quantify the coefficients of the nonlinear robot dynamic model. (iii) An 
upgraded testbed should be designed, integrated, and tested at AFRL-RV. (iv) A quad-rotor can 
be used to hover around the testbed, on board of which a web camera and an altimeter will 
provide real-time information about the test area and moving targets in the proximity operations 
(e.g. rendezvous maneuvers). A vision algorithm considering the moving platform should be 
investigated. The testbed needs to be more flexible so that other applications (e.g. game 
problems) can be tested. 
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       LIST OF ACRONYMS, ABBREVIATIONS, AND SYMBOLS 

ACRONYM  Description
   

MC  Motion Camouflage
VMC  Virtual Motion Camouflage

PCP  Path Control Parameter
NCC  Normalized Cross Correlation
RGB  Red, Green, and Blue
UCF  University of Central Florida
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